Remote sensing

How do you make remote sensing data work for diverse small-scale farmers and pastoralists in diverse African contexts?

By Brittany Bunce and Maurice Beseng 15.07.2021

 


In the last two decades, there has been a growing appeal to use data derived from Earth Observation (EO) to support sustainable development policies in Africa, especially in the agricultural sector where there is a lack of reliable and timely information. EO data such as satellite remote sensing is seen as a powerful tool to modernise the monitoring and improvement of agriculture on the continent. Globally, there are many  Earth Observation for Development (EO4D) initiatives, and an increasing number focusing on Africa that draw on remote sensing data to support decision-making in agricultural practices such as land cover/ land use mapping, crop/vegetation monitoring and famine early warning. An example is the “Enhancing food security in African AgriCultural systems with the support of REmote Sensing (AfriCultuReS)- a European Union-funded Horizon 2020 Project, which is developing an integrated agricultural monitoring and early warning system that brings remote sensing data together with crop and climate models to inform decision-making, with the ultimate aim of improving food security in Africa. The platform will provide seven bundled services related to climate, drought, land, livestock, crops, water and weather. It is hoped that a diverse set of end-users will be able to make use of the final platform, including small-scale farmers and pastoralists as the primary producers, as well as actors in the agribusiness, public, financial and academic sectors, across eight African partner countries.

While projects such as AfriCultuReS indicate the immense interest and ambition to leverage EO4D, the path from satellite images to sustainable agricultural policies or services in Africa is not straightforward. There are increasing concerns that current efforts to create EO4D applications for African agricultural development are largely built on foreign engineering designs rooted in the North, are financially unsustainable and fail to grapple with the key constraints faced by end users in Africa. Hence, despite the palpable excitement around the potential of using remote sensing data for agricultural development, there remains reason to be cautious and to take stock of some of the shortcomings and limitations of technical fixes to Africa’s complex agrarian system.

Emerging voices on EO4D for African agriculture advocate partnering with end-users in the co-creation of EO products through all stages of their design, implementation and evaluation. In this context, ‘capacity development’ approaches are being reconceptualized to accommodate the need to improve the ability of technical developers to create data and services that more closely serve the needs of end users. This is a welcomed move away from the paternalistic and rather simplistic focus on ‘building’ the capacity of end users to understand EO data, that may or may not be asking the right questions and hence might be unable to solve the key challenges end users face on the ground.



Remote sensing (2)

Figure: Smallholder goat and mango farm, Tzaneen, Limpopo Province, South Africa (Photo Credit: Brittany Bunce)

Clearly, solving food security challenges across various African socio-political contexts requires a methodology that allows remote sensing data to be embedded more closely within the complexity of diverse African agrarian systems. The concept of crowdsensing is being promoted to allow for the gathering of important georeferenced data by farmers and other end users, which can be processed through apps and shared in a collective manner through mobile devices. Importantly, the resulting platforms should integrate indigenous knowledge systems and be able to respond to the varied specificities of smallholder production. Remote sensing platforms should be able to take account of this world of complex social and ecological relations, otherwise purely top-down interventions are unlikely to be effective and worse, are at risk of endangering livelihoods or reinforcing local inequalities.

A question foremost in our mind is how end users without technical expertise in remote sensing and GIS can practically make use of a remote sensing platform to inform decision-making processes that improve the resilience and productivity of their farming systems. This concern has been echoed by partners and potential end users in engagements hosted in AfriCultuReS partner countries. It was suggested that in order to achieve impacts on food security it would be necessary to develop more accessible and user-friendly ways to package the data and to target a diversified set of communication methods to address some of the systemic technology barriers in different contexts e.g. the high cost of data in many African countries. Hence the challenge for developers and for capacity development approaches, is to now devise ways in which this data can be rendered practical and participatory and literally put to work in the field to aid farmers and pastoralists.

A lot of progress has already been made to develop off-line, open-source apps targeted at smallholders and pastoralists (m-Agri Services). However, smartphone access is patchy, and so this approach risks excluding some stakeholders. For this reason, current lessons emerging from AfriCultuReS partners suggest the need to make use of existing communication networks, such as agricultural extension systems, farmer associations or other context specific social networks, or making use of more broadly available communication networks such as local radio, SMS or social media. However, even if a user-friendly interface for an app can be produced and other accessible ways to package the data can be devised, some caveats still remain. Developing capacity among data developers to create the right resources and among end users to understand the data, does not in itself ensure effective decision-making that promotes food security. In other words, what needs to be done to ensure end users are able to interpret the data provided, and then use it to make very practical production and investment decisions on farms, rangelands, in markets and policy spaces?



Remote sensing (3)

To this end, participatory learning and decision-making processes can be integrated to bridge the gap between the platform that is developed and decisions that are made on the farm. There are a number of initiatives that are developing innovative ways to do this, for example, the Participatory Integrated Climate Services for Agriculture (PICSA) approach, which has been used across 20 countries. PICSA provides a step-by-step participatory decision-making framework that allows farmers to work together with trained facilitators (e.g. extension officers) to analyze climate data, together with farm-level data and links them to practical management approaches for specific farms or rangelands. Conceivably a similar approach could be implemented to ensure the seven bundled services provided by AfriCultuReS can be of practical use to farmers and pastoralists, although a precise approach is still being designed.

Figure: Smallholder cabbage plot, Vryheid, KwaZulu-Natal Province, South Africa (Photo Credit: Brittany Bunce)

The strength of a participatory approach like PICSA, is that farmers and pastoralists are in the driving seat and are being supported to make informed decisions, rather than being told what to do by extension workers, a radio announcement or a ‘SMS push notification’, that wouldn’t be able to understand the specificities of their individual farms and livelihood systems. This kind of participatory approach embraces the farm as an integrated social system, rather than just a composite of crops and livestock. The remedy posed to the complexity of EO data, however, is usually to simplify it through something like a ‘SMS push notification’. However, in the case of EO4D, simplicity may be a misfit for a complex challenge like food security and so grappling with complexity may be well worth the effort to ensure we find effective ways to support smallholders and pastoralists.

Link to original blog



Building blocks

Digital building blocks to go beyond pilots for food security

Most geodata applications for food security are still in the pilot stage. Geodata specialists tend to look to general digitalisation initiatives for inspiration. The idea is to learn from them as they started earlier and are supposedly more advanced. Is this true? Apparently not, if you look at the latest World Bank report on digital transformation of the agrifood system.




The report stresses the importance of reducing high transaction costs and information asymmetries and I like the distinction between on-farm and off-farm digital technologies and the emphasis on environmental sustainability. But if you want to know about the way forward, the focus is very much on the “what” and not on the “how”. It’s not that it isn’t a good report, it is just that I expected more.  Evidently not only geodata applications, but also digitalisation initiatives in general still face many challenges.

Similarly, the demand for the creation of a new, digital ecosystem is accompanied by a plea for investment, but then the reader is left in the dark on how this will be achieved in developing countries. Granted, this is a very difficult issue, but I would have expected more insight, especially if you look at the positive picture that earlier reports sketch.

Which reports are these? I mention a few:
Key World Bank reports, one with the AfDB and the AU from 2014 on the transformational use of ICT in Africa and the esourcebook on ICT in Agriculture from 2017 give examples and indicate possible gains from digitalisation. This is why you would expect (or hope for) a structural embedding of digital solutions by 2021, but for many of the case studies it is difficult to find information on the current state-of-affairs and, assuming that successes will get publicity, this is disappointing.
Maybe I am just too impatient. Examples presented in more recent reports are easier to trace. Have a look at the Dalberg/CTA report on the digitalisation of agriculture, the GSMA agritech toolkit or the digital agriculture map GSMA 2020.

In summary, a comprehensive ecosystem for digitalisation in agriculture in developing countries seems still a long way off. For the “how” we have to go back to our pilots again (such as those of G4AW and NpM, now part of the Netherlands Advisory Board (NAB), and those presented in the reports above) and take it from there. Incremental, organic growth and system of systems approaches (such as GEOSS) can be effective.

The message to projects like AfriCultuReS and TWIGA and others is: focus on compatible and replicable building blocks that could fit in such an approach. These could then be used for a combination of applications in agriculture, climate adaptation and environmental sustainability.

 



Space-based services

Space-based services for smallholders: what have we learned?

The Geodata for Agriculture and Water Facility (G4AW) provided co-financing grants to 25 projects in Africa and Asia (23 targeted smallholder farmers and 2 targeted pastoralists). Each project’s objective within this Facility was to reach 100,000 farmers (or 50,000 pastoralists) and create a sustainable business model. The satellite-based services that were part of the portfolio offered were: weather information and forecasts, good agricultural practices, crop management and (index) insurance. For pastoralists information on (good quality) water and pasture was provided.


What have we learned? Some key findings:

  • Most partnerships that were formed have been flexible enough to adapt their services to the emerging user needs.
  • Progress was made with respect to digital inclusion: around 30% of users reached have been women.
  • The involvement of public and private organizations in the G4AW partner countries ensured that services and (new) businesses are well embedded with respect to licences-to-operate and meeting the legal framework for storing and sharing personal data.
  • The created platforms are technically advanced, stable, and easily accessible. However, care should be taken that costs are kept low.
  • A wide range of delivery channels was used: advanced smartphone apps provide clear benefits, but this only works if smallholders have (access to) them. Alternatives are simple SMS-messages and IVR, in many cases extension workers and radio advertisements were also instrumental.
  • Plot-level advice remains challenging: the bigger the plots and the higher the value of the crops, the easier it is to provide relevant and cost-effective advice.
  • The combination of satellite-based services with inclusive finance is especially interesting, see a previous blog on “Geodata for Agtech and Fintech services”.

There is no one-size-fits-all approach to creating successful digital agriculture advisory services. A key factor is how partnerships develop and adopt the right business model for service uptake. The presence of a large agro-business, insurer, bank or telecom company in the partnership creates favourable conditions for reaching food producers and bundling with other services.

 

For more info, including the recommendations, go to the publication



Geodata

Geodata for AGTECH en FINTECH

There is quite some interest in geodata applications for inclusive finance for smallholder farmers. The idea is that financial institutions can make their operations more effective and more efficient. Geodata companies are looking for a combination of new markets and solving societal problems. Applications are credit scoring, assessment of repayment rate and time, geo-location of farms and plots, agricultural advice and risk management. The Platform for Inclusive Finance (NpM) and the Geodata for Agriculture and Water Facility (G4AW) funded a number of pilots.
The results of the pilots are very promising. However, there are a number of considerations to take into account:

Challenges encountered in the implementation of geodata applications were:

  • Building trust and confidence between partners takes more time than anticipated;
  • Receiving organisations need to digitalise their whole business process, not just geodata; and
  • Capacity development and staff time input are needed for working successfully with geodata.

Two factors are especially important from an investor’s perspective:

  • Testing and validation with more growing seasons are needed to assess the real added value of geodata (i.e. more use cases);
  • The application of geodata should be considered in the general framework of digitalisation for streamlining operations and not as stand-alone.

The following technical, organisational and cross-cutting factors play a role in future developments:

  • Technical: availability of more free and open satellite data, increased application of machine learning and artificial intelligence, more integration of different data sources and methodologies, new ways of data collection, expansion of local networks for in situ observation;
  • Organisational: improved partnerships to reach the farmers effectively, increased cooperation with government, more capacity building and involvement of local geodata specialists;
  • Cross-cutting: increased combination with impact investment (for inclusive green growth, climate adaptation, circular economy, commodity flows, tenure security, and energy transition) and stricter regulations on data protection and privacy.

 

Go to the full report



Access to info

Universal and inclusive access to geospatial information for increased production and productivity in agriculture and water

There is a lot of attention for digitalisation for rural development (see for example the IT4D publication), 
however the sustainable increase of production and productivity in agriculture and water with the help of digitalisation has not reached scale yet. The current wisdom is that this is most likely, because most farmers in developing countries are smallholders, notoriously difficult to reach. Is this true? We’ll have a look.

But first a few starting remarks
, going back to the title of this blog. Universal and inclusive access to geospatial information does not necessarily mean that this information is free. Inclusive is added, because people should be empowered to act on the information they get. Paradoxically, this strengthens the case for free, or at least affordable, information provision.

Returning to the subject: what makes the concept of digitalisation so attractive? There is a history of creating an enabling environment for digitalisation:

  • Increased availability of (semi-)smart phones (and other connecting devices);
  • Introduction of smart agriculture in developed countries & digitalisation;
  • Availability of free and open satellite data (US Landsat, EC Copernicus);
  • Efforts to transfer these gains to developing countries, with special attention for smallholders (examples are GSMA, G4AW and the UK Space IPP);
  • Development of new, affordable sensors, such as those used in the TAHMO weather stations and the increased use of drones;
  • Increased connectivity in rural areas via space and air.

The first initiatives on digitalisation for agriculture were those by MNOs. A lot of these were evaluated in 2015 or 2016, but what happened after? The recently published GSMA AgriTech toolkit gives a good overview of best practices and examples. However, there is little information about value added services related to precision agriculture, only a statement that the business case is not clear (farm information is mostly used as a support measure for other services).This seems to confirm that indeed increasing production and productivity for smallholders is the most difficult part to address of the whole agricultural value chain.

But there are success stories. An example is the Garbal app for pastoralists, developed in the STAMP (Mali) and MODHEM (Burkina Faso) projects, supported by the G4AW Facility that promotes the use of satellite applications. Other G4AW success examples deal with weather (start of rainy season, forecasts, extremes) and/or agronomic advice for high-value crops (vegetables) or crops that cover relatively large areas (rice) and/or index insurance.

Indeed, as the GSMA AgriTech toolkit and a recent GrowAsia study indicate, establishing a sustainable business case for these apps takes quite some time. In addition to that, the technology has to work, the transmission channels  need to be appropriate for the target group and data protection and platform ownership need to be arranged (to ensure long-term success, platform costs should be kept as low as possible). In addition, several initiatives indicated that the service provided should consist of information instead of advice, to respect the position and expertise of the farmer / pastoralist as decision maker and often a bundling of services is requested by the target group (to be more effective and to avoid duplication and fragmentation). This makes sense, as increasing production is not very useful, if access to markets is the main limiting factor.

Water management-related apps are maybe easier to market than agricultural apps for smallholders, if one aims at the government as the main client and partner. An example is the use of the HydroNET platform of the company Hydrologic deployed for the Ministry of Agriculture, Land Reform and Rural Development and water boards in South Africa. Usually it helps when these platforms are already developed for and functional in the home market.

This also applies to services that are offered to commercial farmers in developing countries. The € 10 – 13 / ha price (for a minimum of 25 ha) that the company IrriWatch charges for insight and advice on water consumption gives an indication of what to expect.

Other potential market opportunities are services for (local) government to facilitate decision making on food security, such as those developed by the AfriCultuReS project, and services based on the application (new) in situ sensors, such as those developed by the TWIGA project.

When looking at future perspectives, trends, opportunities and challenges, there are four types of providers (overlap is possible and the order does not give any indication of importance of priority) that can be distinguished as potential players in the market of services for agriculture and water:

  1. “Big data” players, like ClimateCorp, 6th Grain, etc. that aim at a potential continental coverage, with lots of AI and ML, etc. Their strength is processing capacity and access to the latest technology. This proposition is appealing to investors, but a potential weakness is lack of knowledge of the local situation.
  2. For African companies knowledge of the local situation is a strong point and they often have a cost advantage and are closer to the target groups. A lack of processing power, IT infrastructure and access to information to keep up with new developments could be bottlenecks.
  3. Companies (mostly from the Global North) that go for one specific technology where they have an advantage, like VanderSat with passive microwave satellite data or Satelligence with combined optical and radar satellite data or with specific sets of algorithms (e.g. eLeaf using evapotranspiration). They are highly specialised, but scaling up, making the business case work and their relatively high costs are weaknesses. When finding sufficient capital and partners, companies could go for the no. 1 category, like VanderSat is doing with insurance partners like SwissRe and AXA Climate.
  4. Companies from India (such as CropIn) or China that have developed solutions for their large home market. They have a cost advantage, but lack of knowledge of the local situation outside their home country could be a disadvantage.

Regardless of whoever will dominate the market, continuing support is needed to develop solutions that (also) cater to smallholders. Inclusiveness from start to end is a requirement for success, in the form of co-design and decision power for individual farmers and/or farmers’ organisations. Only if this condition is met, the promise of geospatial information of creating opportunities that change the context of doing business for and with smallholders will be fulfilled.

 



Accounting

Environmental accounting, on the dashboard or in the trunk?

Fortunately, the attention for environmental accounting and ecosystem accounting is growing. We need more systems for inclusive measurement, monitoring and evaluation.


There are many initiatives:

But they are not used as basis for decision making.

Just to give an example: in the Netherlands there is a great exercise on ecosystem accounting in the province of Limburg, but, as far as I know, this and the more general system of national environmental accounts are not the guiding principle for decision making. When it comes to decision making “traditional” economic arguments prevail. This leads to problems when policy measures for climate change get into conflict with cost-benefit calculations according to the narrow definition. Especially when this has been going on for decades, the consequences are severe. Look for example at the protests of Dutch farmers, who feel they are unfairly treated by the government with measures aimed at reducing the nitrogen surplus.


Of course, one could start a discussion about the metrics used in environmental accounting or ecosystem accounting and their validity. But the same applies to economic calculations, see for example Dan Brockington’s blog on farmers assets in Tanzania.

Why is it so difficult to integrate the two types of accounts? Perhaps because:

  • Environmental accounting and ecosystem accounting are seen as instrument of environmental lobby groups;
  • They are perceived as complicated (material for specialists), with new and unfamiliar concepts;
  • Associated to previous points: there are many assumptions and uncertainties that can be questioned;
  • The outcomes can be painful and require fundamental policy changes, (look for example at water use in Mauritius and the interests of the agricultural and tourist sector);
  • Related to the previous point: they deal with long-term benefits versus short-term economic gain;
  • The main actor involved is the government, a notorious slow changer (and changes of mindset take a long time for anyone).


My own experience in agriculture is that environmental accounting and ecosystem accounting rank very low on priority lists of what should be addressed: increasing production and productivity and reducing (disaster) risk come first.

However, this does not mean that people do not care about sustainability, climate or environmental issues. It simply means that incentives should be changed and, as part of that process, the concept of environmental and ecosystem accounting should be promoted more.


Certification is certainly a step in the good direction. And an integration with data gathering and data analysis can help (look at reports like “Counting on the world to act”)  Two H2020 projects, sponsored by the European Commission and dedicated to the improvement of data provision and analysis for food security, water and climate change in Africa, TWIGA and AfriCultuReS can make a small but important contribution to get environmental and ecosystem accounting from the trunk of the car to the dashboard!



Co-design

Co-design in times of Corona


Home and office of the engineer

One of the few positive points of the Corona-crisis is that it provides an opportunity for reflection. For me this included looking at the design considerations I applied ages ago and the ones we use now. What are the differences and what is still valid? A lesson from the Corona-outbreak is not to take anything for granted. In developed countries the emphasis is very much on achieving maximum efficiency and effectiveness, in developing countries my design criteria focussed on maximum resilience. That means shifting from looking at
“what can go right” to “what can go wrong”.

Nowadays we love to go for the new technical stuff, with buzzwords like big data, disruptive technology, machine learning, etc. In the process, we tend to forget the “what can go wrong”-side of things. Of course we talk of co-design, but in practice this is dealt with as a step in the process and then we go on with the technical things that make us so happy.

The danger is that this creates a mismatch between the “technical solution” and its successful long-term application. Not that there is anything wrong with technology, but things should be kept in perspective.


 
Co-design at work

Here are some design considerations from a long time ago that still apply, in my opinion, and are maybe forgotten in our desire to hit the ball out of the park. This effect is reinforced by the fact that most innovation funding is project-based and we therefore want to show quick results.

Cost reduction: This applies to the introduction of new technology that improves the current situation (e.g. platforms with services derived from big data), but in such a way that the solution is sustainable. Keeping the costs low, instead of counting on a high revenue – high cost scenario (that maximizes profit), reduces the risk of failure. This focus can even lead to additional design gains, where e.g. earthquake-resistant water tanks and acid groundwater-proof concrete well elements turn out to be cheaper than off-the-shelf solutions.

 
Disruptive technology in action

Anti-fragility: This term, coined by Nassim Taleb in his book Antifragile, deals not only with building in redundancy (look at the problems we have now with getting sufficient Corona-testing kits and intensive care beds and equipment in hospitals), but also with keeping the right purpose in mind. That means that wells should be equipped with buckets instead of handpumps, when you know that remote villages will never get visits from maintenance and repair teams. It also refers to the concept of granularity (thanks, Jack Dangermond of ESRI, for a discussion on this, already a long time ago). Design with granularity in mind reduces the risk that when one element malfunctions the whole system breaks down.



Long-term perspective: We should take the time (that we usually think we do not have) to design for the long-term and really involve the people concerned. They then become the owners of the solution, e.g. indigenous communities that get a “yes-we-can” spirit and go for installation of electricity after the drinking water system is completed. On the other hand, just as adjustments to the Corona-situation takes time for us, acceptance of new solutions also is a process that may take longer than anticipated. E.g. by involving everyone you avoid situations where the location of a planned well is “cursed”, because the local traditional well-diggers were not consulted.

And, of course, we are “human, all too human”: after a while we will forget what this Corona-thing was all about. But still, the crisis gives us a good opportunity to give co-design and innovation a new look.

 



Weather forecasting

Weather forecasting for agriculture in Africa,  the business case?

Weather information is a priority for farmers, whether they use irrigation or not. It should be localised, timely and accurate enough, to make the information relevant at field level. In Africa, this is often not the case, although there are information providers, such as aWhere and Weather Impact, that are active on the continent.

There is a clear need for local meteo stations, not only for increasing the density of the meteorological observation network, but also for other parameters. To give an example: humidity is very important for to assess the conditions in which late blight disease in potatoes can occur (information derived from satellites only is not accurate enough). An organisation that aims at filling this gap is TAHMO. TAHMO has now 400 stations and plans to go to 20,000 meteo stations quickly.

But who pays for all this? Cooperation with national meteo agencies is a must, but the budget available is limited. Advertising, as with weather forecasting in developed countries (e.g. buienradar (shower radar) in the Netherlands) is not an option in Africa. In addition, these applications provide their information on the web, while in Africa transmission through SMS and IVR would be more appropriate and needs to be done in the local language(s).

An option is to provide weather forecasting in combination with other services. This could be an inclusive model, paid for in combination with other services in a package, such as agricultural advice. Another option is to make use of a loyalty model: offer weather forecasting in combination with fertiliser or pesticides (paid for by the supplier of these inputs). Weather forecasting can also be considered as a public good. It can then be offered in a service model, paid for by the government, such as the AgriCloud app (a cooperation between the South African Weather Service (SAWS), Hydrologic and others that provides very important and much needed information on the start of the rainy season.

See also “Get this weather app on your cell phone” by Nico Kroese. Here the government has to step in to perform a public function by reducing risk and increasing production and, of course, by paying for the service. And all this does not even take the context of climate change into account that makes weather forecasting even more important and relevant.

If anyone has examples of successful weather forecasting applications that have found a sustainable business model, you are very welcome to share them with me!



Spatial detail

Comparison of the spatial detail between a MODIS LAI image (a) and a downscaled LAI image (b) for the Umbeluzi study area (Mozambique)

 



Downscaling

Downscaling of MODIS LAI data
Presentation in IGARSS 2018

The International Geoscience and Remote Sensing Symposium is a premier event in remote sensing and provides an ideal forum for obtaining up-to-date information about the latest developments, exchanging ideas, identifying future trends and networking with the international geoscience and remote sensing community. This year it is taking place in Valencia, Spain, with the theme "Understanding and Forecasting the Dynamics of our Planet" (https://igarss2018.org/).

Partner AUTH is presenting "Spatial enhancement of MODIS Leaf Area Index (LAI) using regression analysis with Landsat Vegetation Index". The aim of this study was to enhance the spatial resolution of the MODIS LAI product using a downscaling model that combines Enhanced Vegetation Index and LAI images from the two satellites. The results show that it is possible to use this methodology to reliably estimate LAI at a 30m spatial resolution across various climates and ecosystems, thus supporting a food security early warning system.

The presentation is on Friday 27 July 2018, 9:30am.

 

We hope to see you there!

 



Geodata + mobile app



From large to small or from small to large?

From large to small or from small to large?
Lessons from the use of mobile apps and geodata apps for smallholder farmers

Satellite and geodata applications for smallholder agriculture are quite new, more general apps for smallholders that make use of mobile technology are around a bit longer. A number of these mobile initiatives have been evaluated (have a look at www.gsma.com) and it is interesting to look at the finding to see where geodata and mobile apps could complement each other, also with an eye on new application fields, such as (inclusive) finance.

The approaches differ: apps that originate from mobile network operators (MNOs) tend to go for reaching large numbers of farmers quickly and then adjust the content, while the geodata service providers start small to get the tech aspects right and then go for scaling up.


This said, there are three areas where geodata could provide added value to mobile apps:

  1. Mobile apps struggle with correct profiling of smallholder farmers, which have a negative effect on the relevance of the advice given. Satellite information and geodata acquisition on the ground can help improve this by providing regular data on what is where (which crop) and on what is happening. This is all the more valuable, as response on profile data provision by farmers themselves is limited.

  2. Satellite apps can improve the relevance of information, such as timely and regularly updated local weather forecasts. The information is often perceived by smallholder as too general or as not provided at the right time. A combination with local weather observations by farmers themselves, such as currently in a test phase in the Rain4Africa (R4A) project in South Africa (http://www.hydronet.co.za/rain-for-africa-project-r4a-2/) , makes this especially interesting.

  3. The improved accuracy (both in time and place) of information derived from satellite data helps making advice more actionable and allows for regular updates. This has been a problem for mobile apps that make limited or no use of geodata.

Conversely, geodata-based apps, such as those developed in the Geodata for Agriculture and Water (G4AW) Facility (https://g4aw.spaceoffice.nl/en/) can learn lessons in scaling up from mobile apps that already target large numbers of smallholders. Getting the tech aspects right is important, but reaching sufficient clients to make operations sustainable does not automatically follow from that.

Making use of power users (and/or authority figures as ambassadors), keeping the pricing model simple, making the service easy to operate for farmers, using local languages and metrics, taking illiteracy into account and taking care of long-term incentives for those in direct contact with the farmers are important findings from the evaluation of the impact of mobile apps that can be taken to heart in the further development of geodata-based apps.

In a fully operational phase the distinction between mobile apps and geodata apps will disappear. My expectation is that the two will be fully integrated, once the geodata apps get behind the experimental stage. 

Expect this to happen pretty soon!



 

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 774652